5 research outputs found

    The effects of using variable lengths for degraded signal acquisition in GPS receivers

    Get PDF
    The signal acquisition in GPS receivers is the first and very crucial process that may affect the overall performance of a navigation receiver. Acquisition program initiates a searching operation on received navigation signals to detect and identify the visible satellites. However, signal acquisition becomes a very challenging task in a degraded environment (i.e, dense urban) and the receiver may not be able to detect the satellites present in radio-vicinity, thus cannot estimate an accurate position solution. In such environments, satellite signals are attenuated and fluctuated due to fading introduced by Multipath and NLOS reception. To perform signal acquisition in such degraded environments, larger data accumulation can be effective in enhancing SNR, which tradeoff huge computational load, prolonged acquisition time and high cost of receiver. This paper highlights the effects of fading on satellite signal acquisition in GPS receiver through variable data lengths and SNR comparison, and then develops a statistical relationship between satellite visibility and SNR. Furthermore it also analyzes/investigates the tradeoff between computation load and signal data length

    A Content Poisoning Attack Detection and Prevention System in Vehicular Named Data Networking

    Get PDF
    Named data networking (NDN) is gaining momentum in vehicular ad hoc networks (VANETs) thanks to its robust network architecture. However, vehicular NDN (VNDN) faces numerous challenges, including security, privacy, routing, and caching. Specifically, the attackers can jeopardize vehicles’ cache memory with a Content Poisoning Attack (CPA). The CPA is the most difficult to identify because the attacker disseminates malicious content with a valid name. In addition, NDN employs request–response-based content dissemination, which is inefficient in supporting push-based content forwarding in VANET. Meanwhile, VNDN lacks a secure reputation management system. To this end, our contribution is three-fold. We initially propose a threshold-based content caching mechanism for CPA detection and prevention. This mechanism allows or rejects host vehicles to serve content based on their reputation. Secondly, we incorporate a blockchain system that ensures the privacy of every vehicle at roadside units (RSUs). Finally, we extend the scope of NDN from pull-based content retrieval to push-based content dissemination. The experimental evaluation results reveal that our proposed CPA detection mechanism achieves a 100% accuracy in identifying and preventing attackers. The attacker vehicles achieved a 0% cache hit ratio in our proposed mechanism. On the other hand, our blockchain results identified tempered blocks with 100% accuracy and prevented them from storing in the blockchain network. Thus, our proposed solution can identify and prevent CPA with 100% accuracy and effectively filters out tempered blocks. Our proposed research contribution enables the vehicles to store and serve trusted content in VNDN

    A Machine Learning-Based Interest Flooding Attack Detection System in Vehicular Named Data Networking

    No full text
    A vehicular ad hoc network (VANET) has significantly improved transportation efficiency with efficient traffic management, driving safety, and delivering emergency messages. However, existing IP-based VANETs encounter numerous challenges, like security, mobility, caching, and routing. To cope with these limitations, named data networking (NDN) has gained significant attention as an alternative solution to TCP/IP in VANET. NDN offers promising features, like intermittent connectivity support, named-based routing, and in-network content caching. Nevertheless, NDN in VANET is vulnerable to a variety of attacks. On top of attacks, an interest flooding attack (IFA) is one of the most critical attacks. The IFA targets intermediate nodes with a storm of unsatisfying interest requests and saturates network resources such as the Pending Interest Table (PIT). Unlike traditional rule-based statistical approaches, this study detects and prevents attacker vehicles by exploiting a machine learning (ML) binary classification system at roadside units (RSUs). In this connection, we employed and compared the accuracy of five (5) ML classifiers: logistic regression (LR), decision tree (DT), K-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB) on a publicly available dataset implemented on the ndnSIM simulator. The experimental results demonstrate that the RF classifier achieved the highest accuracy (94%) in detecting IFA vehicles. On the other hand, we evaluated an attack prevention system on Python that enables intermediate vehicles to accept or reject interest requests based on the legitimacy of vehicles. Thus, our proposed IFA detection technique contributes to detecting and preventing attacker vehicles from compromising the network resources

    On Mitigating the Effects of Multipath on GNSS Using Environmental Context Detection

    No full text
    Accurate, ubiquitous and reliable navigation can make transportation systems (road, rail, air and marine) more efficient, safer and more sustainable by enabling path planning, route optimization and fuel economy optimization. However, accurate navigation in urban contexts has always been a challenging task due to significant chances of signal blockage and multipath and non-line-of-sight (NLOS) signal reception. This paper presents a detailed study on environmental context detection using GNSS signals and its utilization in mitigating multipath effects by devising a context-aware navigation (CAN) algorithm that detects and characterizes the working environment of a GNSS receiver and applies the desired mitigation strategy accordingly. The CAN algorithm utilizes GNSS measurement variables to categorize the environment into standard, degraded and highly degraded classes and then updates the receiver’s tracking-loop parameters based on the inferred environment. This allows the receiver to adaptively mitigate the effects of multipath/NLOS, which inherently depend upon the type of environment. To validate the functionality and potential of the proposed CAN algorithm, a detailed study on the performance of a multi-GNSS receiver in the quad-constellation mode, i.e., GPS, BeiDou, Galileo and GLONASS, is conducted in this research by traversing an instrumented vehicle around an urban city and acquiring respective GNSS signals in different environments. The performance of a CAN-enabled GNSS receiver is compared with a standard receiver using fundamental quality indicators of GNSS. The experimental results show that the proposed CAN algorithm is a good contributor for improving GNSS performance by anticipating the potential degradation and initiating an adaptive mitigation strategy. The CAN-enabled GNSS receiver achieved a lane-level accuracy of less than 2 m for 53% of the total experimental time-slot in a highly degraded environment, which was previously only 32% when not using the proposed CAN
    corecore